MYSELF

GONADUWAGE DARSHANA NADEESHAN PERERA

NEW MEXICO STATE UNIVERSITY

Sri Lanka

Personal Info

Family

Father

Mother

Sister

Wife

Hobbies

Play Badminton

Play Cricket

Watch Cricket

Watch Movies

Travelling

Shopping in Amazon

Education

Master of Science in Physics New Mexico State University

Bachelor of Science in Physics University of Colombo, Sri Lanka

Bachelor of Science(Computer Systems and Networking) Curtin University of Technology

Research

Measuring Drell-Yan cross section and longitudinal double-spin asymmetry at PHENIX

In p+p collisions at 510 GeV

$$\approx -\frac{\Delta u(x_1)}{u(x_1)} \cdot \frac{\Delta \bar{u}(x_2)}{\bar{u}(x_2)}$$

No resolution power to differentiate the heavy flavors from DY for run 13 using DCAr

Correlation Between DY Tracks

We see a strong correlation between φ corrected DCAr of dimuon tracks for DY

There is no correlation between φ corrected DCAr of dimuon tracks for BB

And there is a weak correlation between ϕ corrected DCAr of dimuon tracks for CC

So we can look at the DCAr difference between each diuon tracks to observe different distributions for each processes.

Better resolution power using difference between DCAr of dimuon tracks

